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SUMMARY . The present paper develops a general nonlinear theory

of elastic shells for which the strain measures depend on first and
second order deformation gradients. The reduction to theories of

previous work is indicated.
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I. Introduction

In a recent paper [17], the authors presented a nonlinear theory
of elastic shells by treating the deformation of an elastic surface.
Subsequently Naghdi [ 2] suggested that the theory of Ref [ 1] could be
improved by defining a surface stréss tensor which is not symmetric.

In developing shell theories from the equations of three-dimensional
continua, it is natural to define a nonsymmetric surface stress tensor.
In this paper, the authors extend the results of Ref [1] by éonsidering
a less restricted class of deformations while simultaneously defining

a non-symmetric surface stress tensor.

Two principles are postulated: a principle of virtual work and a
principle of material objectivity. (An appropriate formulation of the
principle of virtual work is the key to introducing a non-symmetric
stress tensor.) These principles are applied to obtain a theory of
elastic surfaces within the framework of the assumed form of the strain
energy function. The stress tensor and the couple stress tensor, both
non-symmetric surface tensors, depend on deformation tensors k,‘ﬁ and C
which are defined. The quantities which in Ref [ 1] were energetically
undetermined are now explicitly given in terms of the strain energy
function by a constitutive equation. These quantities, which are
interpreted as double stresses, are characteristic of introducing

second order gradients into a theory.

Finally, it is shown how the theory of Ref [1] may be recovered as a

special case of the present theory.
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2. Kinematics

Let XK be rectangular Cartesian coordinates defined in an E We

3"

define a surface S or an R2 imbedded in this E3 by

xKo xK (UA) : (2.1)

where U are general curvilinear coordinates in S. Here and in all cases
Latiﬁ and Greek indices take on the values 1, 2, 3 and 1, 2 respectively.
The surface given by Eq. (2.1) is described by the fundamental surface
tensors A and B with components given by:

K K KK

Aoz = X% Bas = N Xpas

where N with components NK is the unit vector normal to S and where the
semi-colon denotes the total covariant derivative (Erickseru[}D. We

recall that the tensors A and B satisfy the usual equations of surface

theory associated with the names of Gauss, Weingarten and Mainardi-Codazzi.

We now assume that S deforms into a surface s given by

) (2.2)

Majuscule and miniscule Latin and Greek letters and indices will be associated
with S and s respectively. We assume X in S maps into x in s. [If we specify

the mapping

$ uS w?) (2.3)

then the deformation of S into s is given by Eqs (2.1), (2.2) and (2.3).
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We define, for a differential description of the strain, the deformation

tensors:
Las = sz X§Z = agT u;éA u;q:Z (2.4)
. i q.
Kazs = ™ %45 = bep '”;JA Yz (2.5)
P § T
c = = 2.6
AST Al % A i=r . (2.6)

i

and K are the Kirchhoff-Love tensors which enable us to calculate length
and angle changes and normal curvature changes respectively. C, like L, is

associated with changes in the intrinsic aspect of surface geometry.



3. Principles of Virtual Work and Objectivity

We define the virtual work associated with an arbitrary virtual

displacement by

78
o = é"[sk §xK 4 mk(T Sxk,q_] de  + '—L([fk §xk 4 ‘Zk 6Xk’8] dr  (3.1)

where c is a circuit enclosing a surface ¢ in s, &’ is the surface mass
density and the comma denotes ordinary covariant differentiation. The
quantities s and f will later be associated with the stress and body
force vectors while m and;g will define the double stress and the

double body vectors respectively,

We assume that the deformation is such that there exists a strain

energy function € which is of the form

€ = € : ; xi 3.2
(p % "ag) (3.2)
and that the total energy of deformation W is given by
W =f3/6 dir (3.3)
a

We now postulate
(1) that the mechanical behavior of the surface is governed by a principle

of virtual work which requires as a necessary condition for equilibrium:

o
J(yde)

Sw | (3.4a)

0

for arbitrary variations Sxk.



An equivalent formulation of the principle of virtual work is
obtained by introducing Lagrange multipliers tég (Courant and Hilbert [4] )

and requiring as a necessary condition for equilibrium:

k
S o 85 -k ar - o (3.kc)
ou '8 |
T
§(par) = o | (3.4b)
. s &k 5k . .
for arbitrary variations 4x , X » . This latter formulation allows
xk and xk’ to be regarded as independent variables.
A

(i1) the energy function € is objective, i.e.

Se

1t
o

(3.5a)

when
Sx' = al «x (3.5b)

where a'p is an arbitrary constant skew-symmetric tensor.



b Basic Equations of an Elastic Surface

If we set
§ de & Jde &
tk = (a_x_k— U;A + (‘)—X—k—— u; AZ\ (l#.l)
Y\ A2
— §C § v ) |
Ay a‘)f w v (4.2)

x;AZ

apply the principle of virtual work given by (3.4 b, c), and use Eqs (3.1),
(3.2) and (3.3) as well as Green's theorem, we obtain that, for arbitrary

and independent Sx' and 638 & , the following must hold:

on c:
) $ ST
SR S Y (4.3)
where ¥ is the unit normal surface vector to c.
on ([ :
é : "
6, .+ (fk = 0 (4.4a)
* &
~ &7 8 ) ; 6
| + % - T, +yL, " =0 (4 .Lb)
/A/k s 0 k k J/ k

Eqs (4.3) are the boundary conditions, Eqs (k.4) the equilibrium conditions.

We now apply the postulate of material indifference. We note that
Eqs (3.5)a, b may be replaced, or using Eqs (3.2), (k.1) and (4.2), by

the following equation:



1 ‘e + H .
Iy, Aokt ez
’ sAz

_(lé.__ ij &6 XjJ = 0 ' (L*-S)

We next consider Eq (4.5) as a set of 3 independent first order

partial differential equations in the 15 independent variables

x! s x! . The set of 12 functionally independent solutions of
» A » AZ

Eq (4.5) is given by

& = (g, K

pz, Sesr) (4-6)
where L, K and C are given by Eqgs (2.4)-(2.6). Hence we have
€ = €L K 0 | (4.7)
With the use of Eqs (2.L4), (2.5), (2.6),(L.5,(L.7), the constitutive
equations (4.1), (L.2) may be written:
(«3) «x  A)
[ zx[i\)_f;_ o u_j3 + dce w, e o] (4.8)
g AE ’A ’Zv a rAZ ’r ’AZ
TN
§ e v T ¢ S SyT
T = b u, u, u, = b A (4.9).
[ chrZ i s s Yq

14 A

k ‘ df ()_____G u.& u(_r u.r (L.10)
& C ] ’ ’
Azl 4 p3 r

—(57) Je $ T '
I3 = -u”u, (&.11)
A X;———KAZ in Yix | |




when we decompose ZT and /ZZ into their surface representation i.e. we set
~

k& =t°<5xk o Tk
ol

(k.12)

/ak80‘= 'iquxk . }"LW Ak
-

(4.13)

Finally we decompose the equationsof equilibrium into their surface
representation. Eq (4.14a) in such a representation yields the so-called

stress equations of equilibrium:

K6 L S, &/f"‘ = 0 (4. 1ka)
:& 8
¢é + b &r, R = 0 : (4.14b)
’6 d/&
Similarly Eq (4.14b) may be written with the additional use of Eq (4.9):
TAET Ty d oL 8T ., s
X RS S Al s L0 (L. 15)
T
/Zﬂ{,go— + 2b 1[d330’+ t‘s +<r/éé‘ = 0 (4.16)
’U- LT

If we take in order the skew-symmetric and the symmetric part of Eq (k.15)

we obtain:

[t 83 s elg ot &Ja- = Lot §1 _

t + A ’q_-b(r/u +J"€ =0 (4.17)
3 («$)T T (o(& oL,

() ”{(a)f RSP )(H& ) 18)

Pe T/



Equation (L4.16) expresses the usual two equations of moment equilibrium.
Equation (L.17) may be regarded as the form in this theory corresponding
to the third equation of moment equilibrium. Equation (4.18) expresses
the symmetric part of the surface stress tensor tdﬁ in terms of

quantities previously defined or specified. The boundary conditions (4.3)

may.be written:

on ¢ '
§% = A t°( &JJS , s = to(J)d (4.19a)
$ ~ w80 — X0
m =AY , o = I Yy . (4.19b)




5. Concluding Remarks

We have shown that it is possible to introduce a surface stress

A3 c . .
tensor t which is not symmetric in general. Its skew symmetric
[t A1 . . .
part t can be determined from the "third" equation of moment
ey er - oA .
equilibrium. The surface couple stress tensor /u, is also not
. , = (AR) . .
symmetric. |Its symmetric part M is determined from the

constitutive equation (4.11). We note also that Eqs (4.14), (4.16),
(4.17) and (4.18) correspond in order to Eqs (5.19), (5.21)a, b and

(5.22) of Ref [1] . We note that the theory is determinate.

If we write

k k k é

X, = X + X u,
,AZ /Az sg ’AZ
k k é a-

= X u u

x . .
/Az ,XT 'A >

and assume a homogeneous deformation defined by.udj = 0, we can
2
recover the theory of Ref [1] . In this case we set tdﬁ = Caﬁ; ,
s —
£ = %  and although from a geometrical constraint ,(\:’ = 0, we keep

X as an energetically undetermined constraint.
~

For a theory which neglects second order gradients uéj , we set
)
3 o
¢ = é = 0. Then 'CQ( vanishes and the constitutive equation for t( A)

involves only the derivative of § with respect to er The stress
equilibrium equations (4.14) are unchanged, but in (4.16) - (L4.18), we

—

omit the terms involving A . The surface tensors t and .t are still
(2} P A
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non-symmetric but this restricted theory is still determinate. The

reduction to a linear Kirchoff-Love theory is clear.

Finally we point out that the general theory of this paper can be
brought into correspondence with the theory of simple force dipoles
given by Balaban, Green and Naghdi [5] as recorded in equations (6.1)
and (8.16) - (8.23) of this Reference. NI correspond to 1%
6% o TIX  \IB o 2, 0 (L B@8) _\pod _ Bl@d),

, N to u
to j&ﬁxé

9

We point out also that the theory of this paper is the

two-dimensional analogue of the results of Toupin [6] .
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